Product Description
Made in china Hex head brass turning Aluminum stainless steel iron machine knurled insert nut lead screw machining parts
Product Parameters
Professional of Precision Machining | Manufacture components or parts requiring extreme precision, highly complex, Tiniest or Large runs range and highly quality standard needs. |
Product | Precision Nuts, Screws, Turn-milling Parts, Pins, CNC Parts, Die-casting Parts, Forging Parts, Stamping Parts, Surface treatment… |
Process Capability | Lathing, Turn-Milling, CNC, Die-casting, Forging, Stamping, Anodizing, Plating, Sandblasting, Etching, Carver, PVD, Polish, Grinding, Tool-making,etc. |
Material | Copper alloy:C63000, C39200, C95400, C3602, C3604, C36000, HPb59, HPb62, CZ131, CZ132, etc. Stainless steel:301, 303, 304, 316, 316L(VIM/VAR), 410, 416, 420J2, 430(F), 440C, 17-4PH (630), etc. Alloy Steel:WCu, Wolfram steel, 4140, 4130, 1Cr13, 2Cr13, 3Cr13, GCr15, Q235, etc. Special alloy: Nickel based alloy: Monel, Invar, Kovar, Inconel,4J29/4J50, INVAR36, etc. Titanium alloy:TC4 ELI, Ti-2AI-2.5Zr, etc. Aluminum alloy:2011, 2017, 5056, 5052, 6061, 6082, 6063, 7075, etc. Polymer material:PEEK, DELRIN, PTFE, ULTEM, TX-PET, POM, etc |
Tolerance | ± 0.01mm |
Certifications | IS0 9001,ISO 14001,ISO 13485 ,IATF 16949 Certified |
Quality Guarantee | 1 years |
Inspection | 1.100% inspection on critical dimension; 100% on appearance. 2.Third Party inspection available upon requirement |
Mainly Testing Facility | 3D tester: Zeiss CMM / CONTURA G2, B&G CMM / GLOBAL OGP 3D, Aberlink CMM / Axiom Too, YHD OMM / 500G; Marsurf ps1 Roughness Tester, Hardness Tester, CCD Immage Tester, Alloy Metal analysis Tester, Spectrophoto meter, Metallurgical Microscope Tester, Raw material Spectrum analyzer, Thermal Shock Tester, Shaking Abrasion Tester, Salt Spray Test, Humidity machine Tester, Abrasion resistance Tester, Alcohol Resistance Tester, Artificial Sweat Tester, Cosmetic Tester |
Features & Advantage | 1,Manufacturing Capabilities -Diameter Range (OD Ø): Ø0.2~ Ø 700mm -Max. Length*Width*Height: 2,000*1,000*700mm -Accuracy Tolerance: ±0.002mm 2,Production Capacity -CNC Machine Qty: Total 1,500 sets; 5,000,000 pcs/Month -Turn-miling Machine Qty: Total 163 sets; 4,000,000 pcs/Month -Die-casting Machine Qty: Total 41 sets, 135T-500T; 1,000,000 pcs/Month -Stamping Machine Qty: Total 89 sets, 30T-300T; 40,000,000 pcs/Month 3,Complete surface treatment process -Anodizing, Electric plating, Sandblasting, PVD, Painting/Spray, Polishing, Grinding, Mirror Effect Polishing, Chemical Etching, Nitriding, Zero Discharge System , etc. 4,Wide range of processing materials -All kind of alloy metal precision maching -Polymer material: PEEK, DELRIN, PTFE, ULTEM, TX-PET, POM, etc. |
Application | Datacom,Aerospace/aircraft,Sensor,consumer electronics,security,New energy,Vaccuum,Industrial,Medical device |
Turn-milling Capacity
1. Machine Brand: STAR, TUSGAMI, MAZAK, DOOSAN, GOODWAY etc.
2. Focus: Copper alloy Stainless steel/Alloy Steel/Titanium alloy/Aluminum alloy/Polymer material/Special alloy Nickel based alloy
3. Equipment: Total 163 sets
4. Capacity: 5,000,000 pcs per month
5. Part size: Φ0.5~700mm/Length*Width*Height: 2000mm*1000mm*700mm
6. Accuracy: +/-0.002mm
7. CP65 specify production area
Application in
1. Medical Devices
2. Communication
3. Consumer Electronics
4. Automobile
5. Security
6. New Energy
7. Industrial
Product Type
Product Bodies, Components, RF Connectors, Socket, Power Contacts, Connectors, Outer Contacts, pin, RF, Coax Connectors,Fiber Optics, Sensors for diagnostic, Implants, Bone screws, Commissurotomies, Nut, Screw, etc.
Company Profile
LinkB Metal, a dedicated design, manufacture and sales of a full range of high-precision metal parts and fasteners (aluminum alloy, stainless steel, copper, titanium alloy, etc.),Manufacturing processes such as stamping,die-casting,forging,CNC machining,multitasking turning & milling and surface treatment such as polishing, sand blasting, photo-chemical etching,electroplating, anodizing, PVD coating and laser etching. LinkB provide overall solutions from product development, mold and process design, product manufacturing, quality control, and sales services.
Our company’s products are used around us, such as mobile phones , notebooks,tablets, communications accessories, motor vehicles or new energy vehicles, security and monitoring equipment, and medical equipment etc. Through the high-precision metal parts and fasteners designed and manufactured by LinkB , you, me and the whole world are closely connected, just like the company logo, Link Bi-Metal. The company has a team of professional personnel dedicated to the design, processing and surface treatment of a full range of high-precision metal parts and fasteners, laying a foundation for research and development, production and sales, which providing an guarantee for the company’s rapid development.
LinkB is adhering to the business philosophy of ” Customer First, Pursuit of Excellence, Teamwork, Continuous Innovation, Mutual respect and growth together”, to make unremitting efforts to be 1 of world-class manufacturer of precision metal parts.
Certifications
FAQ
Q1:Are you manufacturer?
A:Of course we are.We Have our own factory .So we accept customization.Our company located in HangZhou city where is the most large mold base.
Q2:What’s your lead time?
A:Mold manufacturing time:It depends on the product size and structure, usually the CZPT making lead time is 25 to 35days,die casting production time;according to the steps and complexity of product processing,and the quantity of the order
Q3:How to control the quality?
A:We have QC department,three-coordinate measuring machine,projector,high gauge etc in mass production stage,we will have the professional QC and die casting and plastic injection engineers to control the product quality,test 10pcs each hour.
Q4:What Surface finishing can your provide?
A:We can provide shot blasting,polishing,painting,powder coating,anodizing,electroplating,Chrome Plating(Matt/Bright),Nickle plating,Zinc Plating,mirror polishing,trivalent chromate passivation,e-coating,etc.
Q5:Do you provide prototyping service?
A:We can help you with your prototyping needs and expecting the high volume production.
Q6:If I send you the 3D file,why do you still need 2D drawing?
A:The 3D file is very useful,but there are some other requirement not indicated like the tolerance and the surface treatment apply in the part.This is why the 2D file is needed
Q7:What other questions can I get the fast quotation?
A:The annual quantity,materials selected,application or function of the parts,project delivery schedule,net weight(if you don’t it,you must give us the 3D file),destination port.
Screw Shaft Types
A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:
Size
A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
Material
The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each 1 has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best 1 depends on the application.
The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.
Function
The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
Screws can be classified into 2 types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
Applications
The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.