Product Description
GG Series Stepped Precision Ball Screw (C3/C5)
Table of Shaft dia. and Lead combination for Precision Ball Screw | |||||||||||||||||||||||
Lead (mm) | |||||||||||||||||||||||
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 15 | 16 | 20 | 25 | 30 | 32 | 40 | 50 | 60 | 63 | ||
Shaft dia (mm) | 4 | / | / | / | / | / | |||||||||||||||||
5 | / | / | / | ||||||||||||||||||||
6 | / | / | / | / | / | / | / | ||||||||||||||||
8 | / | / | / | / | / | / | / | / | / | / | / | ||||||||||||
10 | / | / | / | / | / | / | / | / | / | / | / | / | |||||||||||
12 | / | / | / | / | / | / | / | / | |||||||||||||||
13 | / | / | / | ||||||||||||||||||||
14 | / | / | / | / | / | ||||||||||||||||||
15 | / | / | / | / | |||||||||||||||||||
16 | / | / | / | / | / | / | / | / | |||||||||||||||
20 | / | / | / | / | / | / | / | / | |||||||||||||||
25 | / | / | / | / | / | / | / | ||||||||||||||||
28 | / | / | |||||||||||||||||||||
30 | / | / | |||||||||||||||||||||
32 | / | / | / | / | / | / | / | / | / | / | / | ||||||||||||
39 | / | / | / | ||||||||||||||||||||
40 | / | / | / | / | / | / | / | / | / | / | / | ||||||||||||
48 | / | / | |||||||||||||||||||||
50 | / | / | / | / | / | / | / | / | / | / | / | / | / | / | |||||||||
60 | / | / | |||||||||||||||||||||
63 | / | / | / | / | / | / | / | / | / | / | |||||||||||||
80 | / | / | / | / | / | / | / | ||||||||||||||||
100 | / | / | / | / | / | ||||||||||||||||||
120 | / | / | |||||||||||||||||||||
125 | / | / | / | / | / | / | |||||||||||||||||
160 | / | / | / | / | |||||||||||||||||||
200 | / | / | / |
Accuracy class and axial clearance
Accuracy grade of GG series stepped precision ball screw are based on C3 and C5(JISB1192-3). According to accuracy grade, Axial play 0 (Preload :C3) and 0.005mm or less(C5).
Material & Surface Hardness
GG series stepped precision ball screw of screw shaft screw material S55C (induction hardening), nut material SCM415H (carburizing and hardening), the surface hardness of the ball screw part is HRC58 or higher.
Application:
1. Medical industry
2.Lithium battery industry
3.Solar photovoltaic industry
4. Semiconductor Industry
5. General industry machinery
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment
9. 3C industry etc
Shaft End Shape
The shaft end shape of the GG series stepped precision ball screw has been standardized.
Technical Drawing
Specification List
FACTORY DETAILED PROCESSING PHOTOS
HIGH QUALITY CONTROL SYSTEM
FAQ
1. Why choose CHINAMFG China?
Over the past 14 years, CHINAMFG has always insisted that “products and services” start from Japanese industry standards,taking ZheJiang standards as the bottom line, actively invest in the development of new transmission components and self-experiment and test. With the service tenet of “exceeding customer expectations”, establish a “trusted” partnership.
2. What is your main products ?
We are a leading manufacturer and distributor of linear motion components in China. Especially miniature size of Ball Screws and Linear Actuators and linear motion guideways. Our brand “KGG” stands for ” Know-how,” ” Great Quality,” and ” Good value” and our factory is located in the most advanced city in China: ZheJiang with the best equipment and sophisticated technology, completely strict quality control system. Our aim is to supply world leader class linear motion components but with most reasonable price in the world.
3. How to Custom-made (OEM/ODM)?
If you have a product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.
4. When can I get the quotation?
We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price,please call us or tell us in your email so that we will regard your inquiry priority.
5. How can I get a sample to check the quality?
After confirmation of our quoted price, you can place the sample order. The sample will be started after you CHINAMFG back our detailed technical file.
6. What’s your payment terms?
Our payment terms is 30% deposit,balance 70% before shipment. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Precision: | C3/C5 |
---|---|
Screw Diameter: | 8mm |
Flange: | With Flange |
Nut Number: | Single |
Rows Number: | 3-Row |
Nut Type: | Circulator |
Customization: |
Available
|
|
---|
How do lead screws contribute to the efficiency and accuracy of linear motion systems?
Lead screws play a crucial role in enhancing the efficiency and accuracy of linear motion systems. Here’s how they contribute to these aspects:
Efficiency:
Lead screws can contribute to the efficiency of linear motion systems in the following ways:
- Mechanical Efficiency: Lead screws can achieve high mechanical efficiency in converting rotary motion into linear motion. The efficiency depends on factors such as the thread design, lubrication, and preload. When properly designed and lubricated, lead screws can operate with minimal friction and energy loss, ensuring efficient power transmission. This efficiency allows for effective utilization of the input power and reduces energy consumption.
- Self-Locking Capability: Lead screws have a self-locking characteristic, which means they can hold their position without the need for additional locking mechanisms. The friction between the mating threads helps prevent back-driving and maintains the position of the load. This self-locking property eliminates the need for continuous power input to hold the position, improving overall efficiency.
- No Energy Consumption at Rest: When the lead screw is not in motion, it does not consume any energy. This is advantageous in applications where the load needs to be held in position for extended periods. The self-locking feature of lead screws ensures that the load remains stationary without energy input, contributing to energy efficiency.
Accuracy:
Lead screws contribute to the accuracy of linear motion systems in the following ways:
- Precise Positioning: Lead screws allow for precise positioning of components or loads. The thread pitch and design, combined with the rotational input, enable accurate and controlled linear movement. This precision is crucial in applications that require accurate alignment, spacing, or adjustment of components.
- Repeatability: Lead screws provide excellent repeatability in linear motion. Once a position is established, lead screws can reliably return to the same position repeatedly. This repeatability is critical in applications where consistent and repeatable motion is required, such as in CNC machines or automated systems.
- Low Backlash: Backlash refers to the axial movement or play between the screw and nut when changing direction. Lead screws can be designed to minimize backlash, resulting in more accurate positioning and reduced lost motion. Low backlash is particularly important in applications that demand precise positioning, such as machining operations or optical systems.
- Elimination of Drift: Lead screws help eliminate drift or movement over time. Once a position is set, the self-locking property of lead screws ensures that the load remains stationary without any gradual drift or positional changes. This stability is beneficial in applications where maintaining a fixed position is critical, such as in inspection systems or medical equipment.
Overall, lead screws provide efficient power transmission, self-locking capability, precise positioning, repeatability, and low backlash, all of which contribute to the efficiency and accuracy of linear motion systems. These characteristics make lead screws suitable for a wide range of applications where controlled and reliable linear motion is required.
How do lead screws contribute to the adaptability and versatility of mechanical systems in different settings?
Lead screws play a significant role in enhancing the adaptability and versatility of mechanical systems across various settings. Their unique characteristics and capabilities enable precise linear motion, load handling, and control, making them valuable components in a wide range of applications. Here are some key ways in which lead screws contribute to the adaptability and versatility of mechanical systems:
- Precise Positioning: Lead screws provide accurate and repeatable linear motion, allowing for precise positioning of components or loads within a mechanical system. By converting rotational motion into linear motion, lead screws enable controlled and incremental movement, making them ideal for applications that require precise positioning, such as CNC machinery, 3D printers, or automated assembly systems.
- Variable Speed and Velocity: Lead screws offer flexibility in adjusting speed and velocity profiles within a mechanical system. By controlling the rotational speed of the screw, the linear speed and velocity can be varied as required. This adaptability is beneficial in applications that involve changing speed requirements, such as conveyor systems, material handling equipment, or packaging machinery.
- Load Handling Capability: Lead screws can handle a wide range of load capacities, making them adaptable to different mechanical system requirements. They possess high load-carrying capacities and can transmit substantial axial forces, enabling the manipulation of heavy loads. Lead screws find applications in various settings, including lifting mechanisms, industrial automation, aerospace systems, or medical equipment, where load handling is a critical factor.
- Compact Design: Lead screws offer a compact and space-efficient design, allowing for their integration into systems with limited space. Their axial configuration and threaded structure make them suitable for applications where size constraints exist. Lead screws are commonly used in compact devices and systems such as miniature robotics, precision instruments, or medical devices, where space optimization is essential.
- Cost-Effectiveness: Lead screws provide a cost-effective solution for linear motion compared to alternatives such as linear actuators or ball screws. They offer a balance between performance, precision, and cost, making them an economical choice for various applications. Lead screws are widely used in industrial machinery, automotive systems, or consumer products, where cost considerations are important.
- Easy Installation and Maintenance: Lead screws are relatively easy to install and maintain, contributing to their adaptability in different settings. They can be integrated into existing systems or retrofitted without significant modifications. Maintenance tasks such as lubrication or inspection can be performed with relative ease. This ease of installation and maintenance makes lead screws suitable for applications requiring quick deployment, frequent adjustments, or serviceability.
Overall, lead screws provide adaptability and versatility to mechanical systems by enabling precise positioning, variable speed control, efficient load handling, compact design, cost-effectiveness, and ease of installation and maintenance. Their capabilities make them widely applicable across industries and settings, offering a reliable and flexible solution for achieving linear motion requirements in diverse mechanical systems.
What is a lead screw, and how is it used in mechanical applications?
A lead screw is a type of threaded shaft used in mechanical applications to convert rotary motion into linear motion or vice versa. It consists of a screw with a helical thread and a matching nut with corresponding threads. The lead screw and nut are designed in such a way that when the screw is rotated, it moves the nut along its length, resulting in linear motion.
The primary purpose of a lead screw is to transmit motion and force between rotating and linearly translating components in a mechanical system. It offers precise control over linear movement and is commonly used in various applications, including but not limited to:
- Precision Positioning: Lead screws are widely used in applications that require precise positioning, such as CNC machines, 3D printers, and robotic systems. By coupling the lead screw to a motor or handwheel, the rotational motion can be translated into precise linear movement, allowing for accurate positioning of components or tools.
- Actuation and Adjustment: Lead screws are often utilized for actuation and adjustment mechanisms in equipment and machinery. They can be employed to raise or lower platforms, adjust the height of work surfaces, control the position of tool heads, or move components along a linear path. Lead screws provide a straightforward and reliable means of achieving controlled linear motion in these applications.
- Load Transfer: Lead screws can also serve as load-bearing elements in mechanical systems. They can transmit axial loads and handle tension or compression forces, making them suitable for applications that require smooth and controlled lifting or lowering of heavy loads. In such cases, the lead screw is often combined with thrust bearings or other supporting elements to handle the applied loads.
- Manual and Handwheel Operations: Lead screws are commonly used in manual and handwheel-operated systems. By incorporating a handle or handwheel, the user can rotate the lead screw directly, enabling manual adjustment or movement of components. This is frequently seen in applications like manual stage positioning, height adjustment mechanisms, or manual clamping systems.
- Power Transmission: In some cases, lead screws can be employed for power transmission purposes. While they are not as efficient as other transmission methods like gears or belts, lead screws can be used to transfer torque between rotating shafts and linearly translating components. This is often seen in applications where the primary focus is on converting rotational motion into linear motion rather than optimizing power transmission efficiency.
Lead screws come in various designs, including single-start and multi-start threads, different thread pitches, and varying lead screw and nut materials. The selection of a lead screw depends on the specific requirements of the application, such as load capacity, desired speed, precision, and environmental conditions. Factors like backlash, efficiency, and maintenance requirements should also be considered when choosing a lead screw for a particular mechanical application.
editor by CX 2024-03-18