China Custom China Wholesale High Precision Control Lead Screw Rotation Nut Stainless Steel Ball Screw CNC Linear Guide Bearing Ground Ball Screw Rod with Nut and Coupling

Product Description

Product Information
Ball screw is a desired product which turns rotary motion into linear motion, or linear motion into rotary motion. 
Ball screw is made of screw, nut, ball and reversing device. Its function is to turn the rotary motion into
linear motion, which is a further extension and development of ball screw. The significance of this development
is to move into a rolling bearing from sliding action. With little friction, ball screws are widely used in various
industrial equipment and precision instrument.

Model
Pitch 4mm: SFU1204, SFU1604, SFU2004
Pitch 5mm: SFU1605, SFU2005, SFU2505, SFU3205, SFU4005
Pitch 10mm: SFU1610, SFU2571, SFU2510, SFU3210, SFU4571, SFU5571, SFU6310
 
Application
Ball screw are used in aircraft and missiles to moving control surfaces, especially for electric fly by wire and
in automobile power steering to translate rotary motion from an electric motor to axial motion of the steering rack . 
Ball screw also used in machine tools, robots and precision assembly equipment .High precision ball screw are
used in steppers for semiconductors manufacturing.
1)3D printers, stepper motor etc.
2)Industrial machinery Printing, paper-processing, automatic machines, textiles, etc.
3)Electronic machinery Robot, measuring instruments, medical equipment, X-Y table,
factory automation equipment, etc.
4)Transport machinery Material handling equipment, nuclear reactor-actuator, etc.
5)Aircraft applications: aircraft flaps, actuators, airport loading equipment, etc.

1.About us
We are in HangZhou, ZheJiang , which is the hometown of CNC Router. We are focus on CNC Machine Parts.

We’ve been in this business for more than 10 years.

2.What products do we have?
We have many CNC Machine Parts , include Spindle,Inverter,stepper motor,driver,guide rail,sliding block,
rack,gear box,water pump,dust collector,coupling,tool-setter,tool cutter.  And so on …
 

3.How we guarantee the quality of the products?

Each batch of products will pass the test before leaving the factory.
Before delivery, we will check the list 1 by one.
 

4.Why you should choose us?

We are focus on CNC Router Parts more than 10years. We can provide you with the overall solution, We
can offer you many type CNC products.Just tell us which you need , we will provide you as the best price
and the best quality and service.
 

5.What’s the payment term?

We normally accept T/T, Western Union, L/C, and Paypal.
 

6.What about the shipping ?

We support multiple modes of transportation,such as by express,by air,by sea,by rail and so on.
Also can shipping by DHL\FedEx\TNT\UPS\EMS and so on.
We can offer different type transactions:  FOB\EXW\FCA\DAP\CIF.
We can also help you to keep other suppliers goods at our wareh ouse and shipping together.
 

7.How to place an order?

Just tell us what you need , then we can make a Invoice for you. If all OK , then make the order and we
shipping to you the goods ASAP.
In order to ensure that all products are what you need, we will show you the pictures, drawings, videos
and so on before shipping .
 

8.What about the delivery time?

We have a large warehouse and most of our goods are in stock.When you have order, we can shipping
the goods fast.
Generally speaking, the time from our warehouse to the forwarder is about 2 days, and then the goods
can be sent by DHL FedEx UPS TNT to you.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Service
Warranty: on Line Service
Logo Printing: with Logo Printing
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

lead screw

How does the design of lead screws impact their performance in different environments?

The design of lead screws plays a crucial role in determining their performance in different environments. Lead screws are mechanical devices used to convert rotational motion into linear motion. They consist of a screw (also known as the lead screw or power screw) and a nut that engages with the screw’s threads. The performance of lead screws can be influenced by various design factors, including the thread profile, lead angle, material selection, and lubrication.

Thread Profile: The thread profile of a lead screw refers to the shape of the threads on the screw and nut. Common thread profiles include square, Acme, and ball screw. The choice of thread profile affects the efficiency, backlash, and load-carrying capacity of the lead screw. For example, ball screws generally offer higher efficiency and lower backlash compared to square or Acme threads, making them suitable for applications requiring high precision and efficiency.

Lead Angle: The lead angle of a lead screw is the angle between the helix and the axis of the screw. It determines the linear distance traveled by the nut for each revolution of the screw. Lead angle influences the mechanical advantage, speed, and load-carrying capacity of the lead screw. Steeper lead angles provide higher mechanical advantage but may reduce the speed and load capacity. Shallower lead angles, on the other hand, offer higher speed but lower mechanical advantage.

Material Selection: The choice of materials for lead screws depends on the specific environmental conditions and application requirements. Factors such as mechanical strength, wear resistance, corrosion resistance, and temperature resistance need to be considered. Common materials for lead screws include stainless steel, carbon steel, and bronze. Stainless steel is often preferred for its corrosion resistance, while bronze may be chosen for its self-lubricating properties.

Lubrication: Proper lubrication is essential for the smooth operation and longevity of lead screws. Lubricants reduce friction and wear between the screw and nut, improving efficiency and reducing the chances of seizing or galling. The selection of lubricants depends on the operating conditions, such as temperature, speed, and load. For high-temperature environments, specialized high-temperature lubricants may be required.

In different environments, the design considerations for lead screws may vary. For example:

  • In high-temperature environments, the selection of materials with high-temperature resistance becomes critical to prevent premature failure or deformation of the lead screw.
  • In corrosive environments, materials with good corrosion resistance, such as stainless steel or specialized coatings, should be chosen to protect the lead screw from chemical degradation.
  • In applications where precision is crucial, such as CNC machines or robotics, lead screws with low backlash and high efficiency, such as ball screws, are often preferred.

In summary, the design of lead screws, including thread profile, lead angle, material selection, and lubrication, significantly impacts their performance in different environments. It is important to consider the specific requirements of the application and environmental conditions to choose the most suitable lead screw design for optimal performance and longevity.

lead screw

Are there innovations or advancements in lead screw technology that have emerged in recent years?

In recent years, there have been notable innovations and advancements in lead screw technology aimed at improving performance, efficiency, precision, and durability. These advancements have been driven by the demand for more sophisticated machinery and automation systems. Here are some key innovations in lead screw technology that have emerged in recent years:

  1. Anti-Backlash Designs: Backlash, which refers to the play or clearance between the screw and nut, has been a longstanding challenge in lead screw systems. To address this issue, innovative anti-backlash designs have been developed. These designs incorporate mechanisms such as preloading systems, split nuts, or adjustable axial play to minimize or eliminate backlash, resulting in improved precision and repeatability.
  2. High-Efficiency Thread Profiles: Traditional lead screws often feature trapezoidal or ACME thread profiles, which can result in higher friction and lower mechanical efficiency. Recent advancements have introduced new thread profiles, such as the “triangular” or “wedge” profiles, which optimize the contact area between the screw and nut, reducing friction and improving mechanical efficiency. These high-efficiency thread profiles offer smoother operation, increased load-carrying capacity, and improved energy efficiency.
  3. Lead Screw Coatings and Surface Treatments: Coatings and surface treatments have been developed to enhance the durability, wear resistance, and lubrication properties of lead screws. For example, advanced coatings like Teflon, ceramic, or DLC (Diamond-Like Carbon) coatings provide low friction, reduce wear, and improve the lifespan of the lead screw. These coatings also help prevent contaminants from adhering to the surfaces, minimizing the risk of damage or performance degradation.
  4. Integrated Lubrication Systems: Lubrication is crucial for smooth operation and longevity of lead screws. Recent advancements have introduced integrated lubrication systems that automatically deliver a controlled amount of lubricant to the screw and nut. These systems ensure consistent and optimal lubrication, reducing friction, wear, and the need for manual lubrication maintenance. Integrated lubrication systems can be particularly beneficial in applications where access to the lead screw is limited or in environments where contamination risks are high.
  5. Smart and Connected Lead Screw Systems: The rise of Industry 4.0 and the Internet of Things (IoT) has led to the development of smart and connected lead screw systems. These systems feature embedded sensors, communication capabilities, and data analytics algorithms. They enable real-time monitoring of operating parameters, condition monitoring, predictive maintenance, and performance optimization. Smart lead screw systems provide valuable insights, enhance operational efficiency, and reduce downtime by enabling proactive maintenance and troubleshooting.
  6. Hybrid Lead Screw Technologies: Hybrid lead screw technologies combine the advantages of different types of screws, such as combining a traditional lead screw with a ball screw or roller screw elements. This fusion results in enhanced performance characteristics, such as increased load capacity, improved efficiency, reduced friction, and higher precision. Hybrid lead screws offer a cost-effective alternative to high-precision ball screws while providing superior performance compared to traditional lead screws.

These recent innovations and advancements in lead screw technology have significantly improved the performance, efficiency, precision, and durability of lead screw systems. Anti-backlash designs, high-efficiency thread profiles, advanced coatings, integrated lubrication systems, smart and connected features, and hybrid technologies have expanded the capabilities and application range of lead screws in various industries, including aerospace, automotive, robotics, and industrial automation.

lead screw

What is a lead screw, and how is it used in mechanical applications?

A lead screw is a type of threaded shaft used in mechanical applications to convert rotary motion into linear motion or vice versa. It consists of a screw with a helical thread and a matching nut with corresponding threads. The lead screw and nut are designed in such a way that when the screw is rotated, it moves the nut along its length, resulting in linear motion.

The primary purpose of a lead screw is to transmit motion and force between rotating and linearly translating components in a mechanical system. It offers precise control over linear movement and is commonly used in various applications, including but not limited to:

  • Precision Positioning: Lead screws are widely used in applications that require precise positioning, such as CNC machines, 3D printers, and robotic systems. By coupling the lead screw to a motor or handwheel, the rotational motion can be translated into precise linear movement, allowing for accurate positioning of components or tools.
  • Actuation and Adjustment: Lead screws are often utilized for actuation and adjustment mechanisms in equipment and machinery. They can be employed to raise or lower platforms, adjust the height of work surfaces, control the position of tool heads, or move components along a linear path. Lead screws provide a straightforward and reliable means of achieving controlled linear motion in these applications.
  • Load Transfer: Lead screws can also serve as load-bearing elements in mechanical systems. They can transmit axial loads and handle tension or compression forces, making them suitable for applications that require smooth and controlled lifting or lowering of heavy loads. In such cases, the lead screw is often combined with thrust bearings or other supporting elements to handle the applied loads.
  • Manual and Handwheel Operations: Lead screws are commonly used in manual and handwheel-operated systems. By incorporating a handle or handwheel, the user can rotate the lead screw directly, enabling manual adjustment or movement of components. This is frequently seen in applications like manual stage positioning, height adjustment mechanisms, or manual clamping systems.
  • Power Transmission: In some cases, lead screws can be employed for power transmission purposes. While they are not as efficient as other transmission methods like gears or belts, lead screws can be used to transfer torque between rotating shafts and linearly translating components. This is often seen in applications where the primary focus is on converting rotational motion into linear motion rather than optimizing power transmission efficiency.

Lead screws come in various designs, including single-start and multi-start threads, different thread pitches, and varying lead screw and nut materials. The selection of a lead screw depends on the specific requirements of the application, such as load capacity, desired speed, precision, and environmental conditions. Factors like backlash, efficiency, and maintenance requirements should also be considered when choosing a lead screw for a particular mechanical application.

China Custom China Wholesale High Precision Control Lead Screw Rotation Nut Stainless Steel Ball Screw CNC Linear Guide Bearing Ground Ball Screw Rod with Nut and Coupling  China Custom China Wholesale High Precision Control Lead Screw Rotation Nut Stainless Steel Ball Screw CNC Linear Guide Bearing Ground Ball Screw Rod with Nut and Coupling
editor by CX 2024-02-27

Recent Posts