Product Description
Customized Aluminum Parts CNC Milling Irregular Shape Parts
We are manufactural Machining parts firm in China,Specializing in All Kinds of Precision Machinery Product for Our Client.And,our products can be Customized by your require.
Specification:
1.Material | Aluminum, Brass, Bronze, Copper, Hardened Metals |
2.Tolerance | +/-0.05mm |
3.Finishing | anodizing,polishing,plating ,blacken ect |
4.Edges and holes | debarred |
5.Surfaces | free of scratches |
6.Material capabilities | aluminum, stainless steel, copper, plastic and more |
7.Various materials and finishing ways are available | |
8.Non-standard aluminum product | |
9.Material and finishing comply with RoHS Directive | |
10.Small orders are welcome |
Technical Details
Technical Process | CNC machining, EDM W/C |
Dimension | Client’s artwork is available |
Capability | Milling:Length,machining range up to 1100*600 mm |
Turning: Diameter 0.05mm~300mm ; Length 0.5mm ~ 750mm | |
Wire Cutting: machining range can up to 450*400*300mm | |
Precision | Turning and Milling:+/- 0.002mm(+/-0.000098 inch) |
Wire Cutting: +/- 0.002 mm (+/-0.000098 inch) |
Equipment List:
Equipment List | ||||
Name | Quantity (set) |
Origin | Precision | Running Distance |
CNC gantry machine | 1 | China | 0.005mm | 2000*1300mm |
CNC machining Centers | 1 | China | 0.005mm | 600*500mm |
CNC horizontal machine center | 4 | China | 0.005mm | 800*500mm |
CNC machining Centers | 9 | China | 0.005mm | 600*500mm |
CNC lathe/mill machine center | 4 | China | 0.005mm | 50*150mm |
Lathe Machine | 2 | China | 0.01mm | 200*750mm |
Milling Machine | 10 | China | 0.01mm | 300*700mm |
grinding machine | 3 | ZheJiang | 0.003mm | 150*400mm |
High Speed W/C | 4 | China | 0.015mm | 250*300*400mm |
Slow Feeding W/C | 1 | China | ||
Sand Blast Machine | 1 | China | ||
Polishing Machine | 1 | China |
QA inspection Equipments:
Measuring Equipment | ||||
Name | Qty(set) | Origin | Precision | W.T |
Height Gauge | 2 | Swiss | 0.001mm | |
Microscopy | 1 | China | 0.005mm | |
Rockwell Hardness Tester | 1 | China | 0.01mm | |
projector | 1 | Japan | 0.003mm | |
Aluminum alloy spectrometer | 1 | Germany | ||
Pull test Machine | 1 | China | 5T |
ZheZheJiang nlead Precision Co., Ltd. which focuses on CNC machining, including milling, turning, auto-lathe turning,holing,
grinding, heat treatment from raw materials of bars, tube, extruded profiles, blanks of cold forging & hot forging, aluminum
die casting.
We provide one-stop service, from professional design analysis, to free quote, fast prototype, IATF16949 & ISO14001
standard manufacturing, to safe shipping and great after-sales services.During 16 years, we have win lots of trust in the
global market, most of them come from North America and Europe.
Now you may have steady customers, and hope you can keep us in the archives to get more market news.
Sunlead produce all kinds of machining parts according to customer’s drawing, we can produces stainless steel Turned
parts,carbon steel Turned parts, aluminum turned parts,brass & copper turned parts. Please feel free to send inquiry to us,
and our professional sales manager will get back to you ASAP!
FAQ
Q1. Are you a factory or a trading company?
We are a factory, welcome to visit our factory.
Q2. What kind of production services do you provide?
Mold manufacturing, die casting, CNC machining, stamping, injection molding, assembly and surface treatment.
Q3. What’s the delivery date?
Mold: 3-5 weeks
Mass production: 3-4 weeks
Q4. How is your quality?
♦We have obtained ISO9001:2015 and IATF16949 certificates.
♦Once the sample is passed, we will make the operating instructions.
♦We will check the products 100% before shipment.
Q5. How long will it take for us to get a quotation?
After receiving the detailed information (your 2D/3D drawings or samples), we will quote you within 2 days.
Q6. What are the elements of your quotation?
Drawings or samples, materials, surface treatment and quantity.
Q7. What are your payment terms?
Mold: 50% prepaid, the balance after sample approval.
Goods: 50% prepaid, balance T/T before shipment. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Quality Control: | Ipqc, Fqc |
---|---|
Drawing Format: | All Format |
Business Type: | Manufacturer |
Samples: |
US$ 12/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What role do lead screws play in ensuring proper alignment and tightness in mechanical assemblies?
Lead screws play a crucial role in ensuring proper alignment and tightness in mechanical assemblies. They provide a reliable means of applying axial force to securely fasten components together. Here’s how lead screws contribute to alignment and tightness:
Alignment:
Lead screws aid in achieving proper alignment in mechanical assemblies through the following mechanisms:
- Linear Motion: Lead screws convert rotary motion into linear motion, allowing for controlled movement and alignment of components. By rotating the lead screw, the connected nut or threaded component moves along the screw’s axis, enabling precise positioning and alignment of the assembly.
- Thread Engagement: The mating threads of the lead screw and nut provide a positive mechanical connection. As the nut moves along the screw, the threads engage tightly, ensuring accurate alignment between the screw and the nut. This thread engagement helps maintain the desired position and alignment of components within the assembly.
- Guidance and Support: Lead screws often incorporate guidance mechanisms, such as linear bearings or sliding surfaces, to ensure smooth and accurate linear motion. These guidance systems help prevent lateral movement, minimize misalignment, and maintain the intended trajectory of the assembly, improving overall alignment.
- Positioning Accuracy: Lead screws offer precise positioning capabilities, allowing for the accurate alignment of components. The thread pitch and design, combined with the rotational input, enable controlled linear movement and positioning. This precision is critical in applications where proper alignment is essential for optimal performance and functionality.
Tightness:
Lead screws contribute to achieving tightness and secure fastening in mechanical assemblies through the following means:
- Axial Force Application: Lead screws transmit axial force to clamp or tighten components together. By rotating the lead screw, the axial force is applied through the nut or threaded component, generating a clamping action that holds the assembly tightly. This axial force helps prevent loosening, vibration, or unintended movement of the connected components.
- Self-Locking Capability: Lead screws possess a self-locking characteristic, which means they can hold their position without the need for additional locking mechanisms. The friction between the mating threads provides resistance to back-driving and helps maintain the tightness of the assembly. This self-locking property ensures that the assembly remains securely fastened, even in the absence of continuous power input.
- Thread Friction: The friction between the mating threads of the lead screw and nut contributes to the tightness of the assembly. When properly lubricated, the thread friction helps increase the resistance to loosening or undesired movement. By controlling the thread friction, the tightness of the assembly can be optimized to meet the specific requirements of the application.
- Preload Adjustment: Lead screws allow for preload adjustment, which is the intentional application of axial force to achieve a desired level of tightness. Preload can be applied by adjusting the initial position of the nut along the lead screw or by incorporating preload mechanisms, such as spring washers or Belleville washers. Preload optimization ensures that the assembly remains tight and secure, even under varying loads or external disturbances.
Overall, lead screws provide a reliable means of achieving proper alignment and tightness in mechanical assemblies. Their linear motion capabilities, thread engagement, guidance mechanisms, positioning accuracy, axial force application, self-locking capability, and preload adjustability all contribute to ensuring the stability, alignment, and tightness of the assembled components.
How do lead screws contribute to the adaptability and versatility of mechanical systems in different settings?
Lead screws play a significant role in enhancing the adaptability and versatility of mechanical systems across various settings. Their unique characteristics and capabilities enable precise linear motion, load handling, and control, making them valuable components in a wide range of applications. Here are some key ways in which lead screws contribute to the adaptability and versatility of mechanical systems:
- Precise Positioning: Lead screws provide accurate and repeatable linear motion, allowing for precise positioning of components or loads within a mechanical system. By converting rotational motion into linear motion, lead screws enable controlled and incremental movement, making them ideal for applications that require precise positioning, such as CNC machinery, 3D printers, or automated assembly systems.
- Variable Speed and Velocity: Lead screws offer flexibility in adjusting speed and velocity profiles within a mechanical system. By controlling the rotational speed of the screw, the linear speed and velocity can be varied as required. This adaptability is beneficial in applications that involve changing speed requirements, such as conveyor systems, material handling equipment, or packaging machinery.
- Load Handling Capability: Lead screws can handle a wide range of load capacities, making them adaptable to different mechanical system requirements. They possess high load-carrying capacities and can transmit substantial axial forces, enabling the manipulation of heavy loads. Lead screws find applications in various settings, including lifting mechanisms, industrial automation, aerospace systems, or medical equipment, where load handling is a critical factor.
- Compact Design: Lead screws offer a compact and space-efficient design, allowing for their integration into systems with limited space. Their axial configuration and threaded structure make them suitable for applications where size constraints exist. Lead screws are commonly used in compact devices and systems such as miniature robotics, precision instruments, or medical devices, where space optimization is essential.
- Cost-Effectiveness: Lead screws provide a cost-effective solution for linear motion compared to alternatives such as linear actuators or ball screws. They offer a balance between performance, precision, and cost, making them an economical choice for various applications. Lead screws are widely used in industrial machinery, automotive systems, or consumer products, where cost considerations are important.
- Easy Installation and Maintenance: Lead screws are relatively easy to install and maintain, contributing to their adaptability in different settings. They can be integrated into existing systems or retrofitted without significant modifications. Maintenance tasks such as lubrication or inspection can be performed with relative ease. This ease of installation and maintenance makes lead screws suitable for applications requiring quick deployment, frequent adjustments, or serviceability.
Overall, lead screws provide adaptability and versatility to mechanical systems by enabling precise positioning, variable speed control, efficient load handling, compact design, cost-effectiveness, and ease of installation and maintenance. Their capabilities make them widely applicable across industries and settings, offering a reliable and flexible solution for achieving linear motion requirements in diverse mechanical systems.
How does a lead screw differ from other types of screws in terms of design and functionality?
A lead screw differs from other types of screws in terms of its design and functionality. Here’s a detailed explanation of the distinctions between lead screws and other screw types:
- Thread Design: Lead screws have a helical thread design, meaning the threads wrap around the screw’s cylindrical shaft in a continuous spiral. This helical thread allows for the conversion of rotary motion into linear motion. In contrast, other types of screws, such as machine screws or wood screws, typically have a straight or tapered thread design suited for fastening or joining applications.
- Linear Motion Conversion: The primary function of a lead screw is to convert rotary motion into linear motion or vice versa. It achieves this by utilizing the engagement between the helical threads on the screw and the matching threads on the nut. This capability makes lead screws suitable for applications requiring precise positioning, actuation, or adjustment of components along a linear path. In contrast, other screws are primarily used for fastening, joining, or securing objects together.
- Precision and Control: Lead screws offer precise control over linear movement due to their thread pitch and the ability to rotate the screw with precision. The pitch determines the linear distance the nut will travel for each revolution of the screw. This feature makes lead screws well-suited for applications that demand accurate positioning or adjustment. In contrast, other screws are not designed with the same level of precision or control over linear motion.
- Load Handling: Lead screws are designed to handle both axial loads (tension or compression forces) and torque. The helical threads and the engagement between the screw and nut distribute the load over a larger surface area, allowing lead screws to support and transfer significant loads. Other screw types, such as machine screws or wood screws, are primarily used for fastening and may not have the same load-bearing capabilities as lead screws.
- Applications: Lead screws find applications in various mechanical systems that require precise linear motion, such as CNC machines, 3D printers, robotic systems, and adjustable mechanisms. They are commonly used for positioning, actuation, or adjustment purposes. Conversely, other types of screws serve different purposes, such as machine screws used for fastening components together, wood screws for joining wooden materials, or self-tapping screws for creating threads in materials like metal or plastic.
Overall, the key differences between lead screws and other types of screws lie in their thread design, their ability to convert rotary motion to linear motion, the precision and control they offer, their load-handling capabilities, and the specific applications they are designed for. Understanding these distinctions is essential when selecting the appropriate screw type for a particular mechanical application.
editor by CX 2024-01-15